
JupyterKernel
Jupyter kernel written in GAP

1.0

5 October 2018

Markus Pfeiffer

Markus Pfeiffer
Email: markus.pfeiffer@morphism.de
Homepage: https://markusp.morphism.de/
Address: School of Computer Science

North Haugh
St Andrews
Fife
KY16 9SX
Scotland

mailto://markus.pfeiffer@morphism.de
https://markusp.morphism.de/

Contents

1 Introduction 3
1.1 GAP Jupyter Kernel . 3
1.2 Installation . 3
1.3 How it works . 4
1.4 Known Limitations and Caveats . 4
1.5 Feedback . 4

2 Jupyter Kernel 5
2.1 Functions . 5

3 Jupyter Renderables 6
3.1 Handlers for Jupyter requests . 6

4 Jupyter Utility Functions 8
4.1 Functions . 8
4.2 Additional Utility Functions . 8

Index 9

2

Chapter 1

Introduction

1.1 GAP Jupyter Kernel

This package provides a so-called kernel for the Jupyter interactive document system. This kernel is
implemented in GAP.

1.2 Installation

This package requires Jupyter to be installed on your system, which on most Python installations can
be achieved by issuing the following command.

Example
> pip install --user notebook

Further instructions can be found at https://jupyter.org/install. This package requires the
GAP packages IO, uuid, ZeroMQInterface, crypting, and json, all of which are distributed with
GAP, and some of which require compilation. To compile ZeroMQInterface you need to install
ZeroMQ, for details please refer to the ZeroMQInterface manual. JupyterKernel itself does not
contain any kernel code that needs to be compiled. It is necessary to register JupyterKernel with
your Jupyter installation. Registering the GAP jupyter kernel system-wide works as follows:

Example
> python setup.py install

or registering for your user only
Example

> python setup.py install --user

If GAP is not in your PATH, then you have to set the environment variable
JUPYTER_GAP_EXECUTABLE to point to your GAP executable for Jupyter to be able to execute
GAP, and the script jupyter-kernel-gap that is distributed with this package in the directory bin/

needs to be in your path. To start Jupyter run:
Example

> jupyter notebook

Then JupyterKernel should show up in your Jupyter installation as "GAP 4".

3

https://jupyter.org
https://jupyter.org
https://jupyter.org/install
https://zeromq.org
https://gap-packages.github.io/ZeroMQInterface/doc/chap0.html
https://jupyter.org
https://jupyter.org
https://jupyter.org
https://jupyter.org

JupyterKernel 4

1.3 How it works

1.3.1 Kernel Startup

This section gives a short explanation how the process of executing GAP as a kernel by Jupyter works
to help with debugging issues. Jupyter registers kernels using json files in various directories. You
can list which kernel specifications are installed by executing the following command

Example
> jupyter kernelspec list

Available kernels:

python2 /usr/local/lib/python2.7/site-packages/ipykernel/resources

gap-native /usr/local/share/jupyter/kernels/gap-native

If there is no line containing the gap-native kernel, something went wrong with setup.py. You
can try to manually install the file kernel.json which is in the etc directory of the JupyterKernel
package by copying it. Better yet, you should report this issue on the issue tracker giving wich
operating system you are using, your version of Jupyter and GAP, and which commands you tried to
execute. What happens when Jupyter wants to start a GAP kernel is that it tries to execute the small
script jupyter-kernel-gap (which is distributed with the JupyterKernel package), which in turn
executes GAP, loading the package and then running the kernel. This script currently has to be in
your PATH environment variable, too.

1.3.2 Kernel operation

The communication between the Jupyter frontend and GAP happens through ZeroMQ streams as
documented here, encoded as JSON dicts. After entering code into a cell and instructing Jupyter to
execute that code, the jupyter frontend sends the code to the GAP session where it is executed by
using the GAP function READ_ALL_COMMANDS, resulting values of the execution are rendered using
ViewString and sent back to the Jupyter frontend. In principle, rich rendering of content, as exempli-
fied in the function JUPYTER_DotSplash is possible. Tab-completion is handled by the GAP function
JUPYTER_completion, and inspection is handled by JUPYTER_Inspect. Changing these functions,
one can change the behaviour of Tab-completion and inspection to improve user experience.

1.4 Known Limitations and Caveats

Currently the support of the GAP system for alternative frontends is a work in progress. In particular,
certain outputs that are printed by GAP cannot be captured by the Jupyter frontend and will not show
up. If you happen to notice problems of this kind, feel free to report them on the issue tracker. or
suggest a solution via a pull-request.

1.5 Feedback

For bug reports, feature requests and suggestions, please use our issue tracker.

https://jupyter.org
https://jupyter.org
https://jupyter.org
https://jupyter.org
https://jupyter.org
http://jupyter-client.readthedocs.io/en/latest/messaging.html
https://jupyter.org
https://jupyter.org
https://jupyter.org
https://github.com/gap-packages/JupyterKernel/issues
https://github.com/gap-packages/JupyterKernel/issues

Chapter 2

Jupyter Kernel

A Jupyter Kernel is an object that can handles the Jupyter Protocol.

2.1 Functions

2.1.1 JUPYTER_LogProtocol

. JUPYTER_LogProtocol(filename) (function)

Opens a file that is used to log all jupyter protocol messages.

2.1.2 JUPYTER_UnlogProtocol

. JUPYTER_UnlogProtocol(arg) (function)

Closes the protocol log.

5

Chapter 3

Jupyter Renderables

A JupyterRenderable is an object that can be rendered by Jupyter. JupyterRenderables are compo-
nent object that have to contain at least the components data and metadata.

These components are themselves GAP records which can contain different representations of an
object to be rendered. The record component name is the MIME-Type of the representation and the
content is the representation itself.

Example
render := JupyterRenderable(

rec(text\/plain := "Integers",

text\/html := "\mathbb{Z}")

, rec());

render2 := JupyterRenderable(

rec(("image/svg+xml") := "<svg></svg>"

, rec(("image/svg+xml") := rec(width := 500, height := 500)));

3.1 Handlers for Jupyter requests

3.1.1 IsJupyterRenderable (for IsObject)

. IsJupyterRenderable(arg) (filter)

Returns: true or false
JupyterRenderable

3.1.2 (for IsComponentObjectRep and IsJupyterRenderable)

. (arg) (filter)

Returns: true or false

3.1.3 JupyterRenderable (for IsObject, IsObject)

. JupyterRenderable(data, metadata) (operation)

Returns: A new JupyterRenderable
Basic constructor for JupyterRenderable

6

JupyterKernel 7

3.1.4 JupyterRender (for IsObject)

. JupyterRender(arg) (operation)

Method that provides rich viewing experience if code used inside Jupyter

3.1.5 JupyterRenderableData (for IsJupyterRenderable)

. JupyterRenderableData(arg) (attribute)

Accessor for data in a JupyterRenderable

3.1.6 JupyterRenderableMetadata (for IsJupyterRenderable)

. JupyterRenderableMetadata(arg) (attribute)

Accessor for metadata in a JupyterRenderable

Chapter 4

Jupyter Utility Functions

4.1 Functions

4.1.1 JUPYTER_print

. JUPYTER_print(arg) (function)

Jupyter printing

4.1.2 JUPYTER_Complete

. JUPYTER_Complete(arg) (function)

This function is called when the user presses Tab in a code cell and produces a list of possible
completions. It is passed the current code in the cell, and the curser position inside the code.

4.2 Additional Utility Functions

4.2.1 ISO8601Stamp

. ISO8601Stamp(arg) (function)

Current date and time as ISO8601 timestamp. Don’t trust this function.

8

Index

IsJupyterRenderable

for IsObject, 6
ISO8601Stamp, 8

JUPYTER_Complete, 8
JUPYTER_LogProtocol, 5
JUPYTER_print, 8
JupyterRender

for IsObject, 7
JupyterRenderable

for IsObject, IsObject, 6
JupyterRenderableData

for IsJupyterRenderable, 7
JupyterRenderableMetadata

for IsJupyterRenderable, 7
JUPYTER_UnlogProtocol, 5

9

	Introduction
	GAP Jupyter Kernel
	Installation
	How it works
	Known Limitations and Caveats
	Feedback

	Jupyter Kernel
	Functions

	Jupyter Renderables
	Handlers for Jupyter requests

	Jupyter Utility Functions
	Functions
	Additional Utility Functions

	Index

